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Abstract: A parabolic dish antenna positioning system is a control unit which directs the antenna to desired 

target automatically. In all its aspects, automation has become widespread and promises to represent the future 

for satellite tracking antenna systems. The term tracking is used to mean that the control system should utilize 

suitable algorithms to automate the process of pointing the antenna to a selected satellite thereby establishing 

the desired line of sight (LOS).  

This paper aims to present and discuss the results obtained from the development of a DC servomotor-based 

Neuro-Fuzzy System Controller (NFSC) algorithm which can be applied in the positioning of the parabolic 

reflector antennas. The advantage of using NFSC method is that it has a high degree of nonlinearity tolerance, 

learning ability and solves problems that are difficult to address with the conventional techniques such as 

Proportional Integral Derivative (PID) strategy. The architecture of the proposed antenna control system 

employs Adaptive Neuro-Fuzzy Inference System (ANFIS) design environment of MATLAB/SIMULINK package. 

The results obtained indicated that the proposed NFSC was able to achieve desired output DC motor position 

with reduced rise time and overshoot. Future work is to apply the controller in real time to achieve automatic 

satellite tracking with parabolic antenna using data derived from the signal strength. 
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I. Introduction 

Parabolic antennas mounted at earth stations which are commonly used in satellite tracking 

applications, are prone to suffer from environmental disturbances [1]. For several years, DC servomotor-based 

controllers have been applied in closed-loop control systems to position or stabilize the satellite dishes. 

However, DC servomotors are known to have nonlinear parameters and dynamic factors, such as saturation, 

backlash and friction which cannot be overlooked. Several controller models have been developed over time to 

solve the problem of antenna pointing in satellite and movable targets tracking using servomechanism [2], [3], 

[4], [5], [6], and [7]. These include conventional controllers such as Proportional-Integral (PI), Linear Quadratic 

Gaussian (LQG) and Proportional-Integral-Derivative (PID) controller on one hand and new intelligent 

techniques such as Fuzzy Logic Controller (FLC), Neural Network, Fuzzy-neural networks and Fuzzy-genetic 

algorithm on the other hand [8], [9] and [10]. Conventional controllers such as PI and PID controllers are 

sensitive to variation in the motor parameters and load. Also, tuning PI or PID gains to reduce the overshoot due 

to load disturbance is difficult. Moreover, an accurate non-linear model of actual DC motor is difficult to find 

and parameter values obtained from system identification may be only approximate values. For this reason, 

many researchers today are interested in applying intelligent adaptive control techniques to achieve fast speed 

response and tolerance to parameter variations. Fuzzy Logic Controller can be an alternative control technique 

to the PID controller [1], [2], [8] and [9]. But the major drawback of the FLC is insufficient analytical design 

technique with respect to the selection of the rules, the membership functions and the scaling factors. On the 

other hand, artificial neural network (ANN) has the ability to learn and adapt but cannot explain what it has 

learnt [10]. As a result, integrating FLC and ANN to generate hybrid model can take advantage of strong points 

of both [11], a strength which is explored here. 

 

1.1. Problem Formulation  

The objective is to design an ANFIS controller for DC servomotor-based antenna pointing system to 

meet the following time domain step response tracking specifications: rise time (
rt ) s3 , settling time (

st ) 

s3 and maximum overshoot ( %10pM ).These limits have been selected based on practical industrial 

standards. 

 

1.2. System Description 

Fig. 1 is the control block diagram of the DC servomotor antenna pointing system. The first input to the 

summer is set position )(tr , the desired position of the azimuth or elevation motor. The second input is the 
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feedback signal, the current position of the respective motor, captured by some feedback sensor like the 

potentiometer and changed to a summer readable format. The difference between these two inputs, called 

position error signal )(te , is given to the controller that reads the signal and produces appropriate output signal, 

controller output )(tu .The controller output reaches the motor driver, which produces a proportional output to 

rotate the respective motor in either direction according to the sign of the error signal. As the desired position is 

approached, the error signal reduces to zero and the motor stops [6]. 

 

 
Fig.1.Block diagram of antenna control mechanism 

 

II. Mathematical Modeling of DC (Servo) motor System 
Fig.2. represents the DC (servo) motor model with parameters defined in Table 1. For an armature-

controlled separately-excited DC motor, the voltage applied to the armature of the motor is varied without 

changing the voltage applied to the field.  

 

 
Fig.2. DC motor Circuit Diagram 

 

Using Kirchhoff’s Voltage Law, the output armature voltage )(tVa
 and motor torque is related to (1) while motor 

torque )(tTm  is related to the armature current )(tIa by a constant factor TK  given in (2): 

                                                       )(
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The back electromotive force (e.m.f) )(tEb
 is related to the angular velocity by (3). Applying Newton's Law, 

Kirchhoff's Law and Laplace transform [7] generates (4) and (5), from which (6) results by eliminating current. 
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The transfer function from the input voltage, )(sVa
to output angle   directly follows (7): 
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In a fixed field motor it is assumed that 
BT KK   and 

aR >> 
aL  which simplifies (7) to (8): 
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Fig. 3 is a block diagram of a DC (servo) motor system showing elements of the transfer function. 

 

 
Fig.3. Block-Diagram of Separately Excited DC (servo) motor 

 

III. Antenna Positioning System Transfer Function and PID Controller 
The system parameters are given in Table 1 [4, 6]. Detailed derivation of the system transfer functions 

without any compensator as well as the assumptions made is presented in [6, 7]. The open-loop transfer function 

for output angular velocity )(to  without feedback is realized as given by (9): 
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Table 1 Parameters of Model with DC Servomotors 
Parameter Definition Azimuth/Elevation 

a Power Amplifier Pole 100 

am Motor and Load Pole 1.71 

Ba Motor Dampening Constant[Nms/rad] 0.01 

BL Load Dampening Constant[Nms/rad] 1 

Bm Equivalent viscous friction coeff. [Nms/rad] 0.02 

Ja Motor Inertial Constant[Kgm2] 0.02 

JL Load Inertial Constant[Kgm2] 1 

Jm Equivalent moment of inertia[Kgm2] 0.03 

K Preamplifier Gain _ 

K1 Power Amplifier Gain 100 

KB Back emf Constant[Vs/rad] 0.5 

Kg Gear Ratio 0.1 

Km Motor and Load Gain 2.083 

Kpot Potentiometer Gain 0.318 

KT Motor Torque Constant[Nm/A] 0.5 

La Motor Armature Inductance[H] 0.45 

N Turns on Potentiometer 10 

N1, N2 N3 Gear Teeth(Respectively) 25,250,250 

Ra Motor Armature Resistance[Ω] 8 

V Voltage across Potentiometer[V] 10 

 

The closed-loop transfer function without the PID compensator is obtained in (10) by using (9) and the 

block diagram reduction.  According to Routh-Herwitz criterion, the system will give stable response with the 

value of "K" in the range 0 < K < 2623, hence 100 is taken [6], [7], giving (11): 
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Fig.4. Block diagram of Antenna Azimuth PID controller 

 

The structure of a PID controller applied to antenna positioning system is shown in Fig.4 while its 

parallel form, [4], is given in (12): 

 

                                                             
dt

tde
KteKteKtU DIp

)(
)()()(                                                   (12)                  

where
pK ,

IK and
DK  are proportional, integral and derivative gains and )(te = error. It is clear that 

the control signal is made up of the sum of three stated gain components. The values of
PK , 

IK  and 
DK  are 

obtained using Ziegler- Nichols tuning algorithm in [6, 7]. The three PID controller gain parameters that gave 

the most stable response were obtained in [7], and quoted as follows: 16pK , 5IK  and 2DK  [7]. 

 

IV. Fuzzy Logic Controller (FLC) Design 
As shown in Fig.5, the FLC system has four main components: Fuzzification Interface (converts a crisp 

point into a fuzzy set), Knowledge Base (consists of a database hosting membership functions of the fuzzy sets 

and a rule-base containing a number of fuzzy IF-THEN rules), Inference Engine (derives a conclusion from the 

facts and rules contained in the knowledge base), and the Defuzzification Interface (maps a fuzzy set to a crisp 

set) [8], [11] and [12]. 

 

 
Fig.5. Block Diagram of Fuzzy Logic Control System 

 

The FLC created had 2 inputs: position error )(te designated as E and change in position error 

)(te represented by DE and a single output given as control input to the DC servo motor driver denoted as CI. 

The linguistic variables have been defined as: {NB, NM, NS, ZR, PS, PM, PB}, where the initials correspond to 

negative big, negative medium, negative small, zero, positive small, positive medium and positive big 

respectively. A total of 7x7=49 Mamdani type rules were used to represent changes in the two inputs. Triangular 

fuzzy sets, being simple and easy to calculate, have been selected for both input (fuzzification) and output 

(defuzzification). The span of non-normalized E is [-7 7], DE is [-7 7] and that of CI is [-7 7] as shown in Fig.6 

together with the constant Sugeno output fuzzy set. The defuzzification method used is the centroid method 

because it can be easily implemented in digital control systems and requires less computation time. For given set 

of inputs to the FLC, appropriate rule(s) must be fired from the rule base and defuzzified to give the control 

input signal. Table 2 summarizes the control rules which map the fuzzy inputs to fuzzy output. 
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Fig.6.The membership functions of E, CE and CI in FIS File 

 

Table 2   7x7 Rules Fuzzy Associative Memory (FAM) 

 
 

V. Neuro-Fuzzy System Controller Design 
5.1  Adaptive Neuro-Fuzzy Principle 

Adaptive Neuro-Fuzzy Inference System (ANFIS) technique is used as a teaching method for Sugeno-

type fuzzy systems and was proposed by Jang [12]. In applying ANFIS, the number and type of fuzzy system 

membership functions (MFs) has to be specified by user. The method is more efficient in the sense that it 

combines the advantages of FLC and NN approach in order to construct a nonlinear self-tuning controller. In 

addition, since the rules are in linguistic format, intermediate results can be analyzed and interpreted easily. 

ANFIS method is also viewed by many researchers, as a hybrid method, which consists of two parts: gradient 

method that is applied to calculation of input membership function parameters and least square method which is 

applied to calculation of output function parameters [13]. There are three constraints of using MATLAB ANFIS 

method as follows: only Sugeno-type decision method is available, there can be only one output and lastly, 

defuzzification method is weighted mean value. A typical architecture of ANFIS control structure is shown in 

Fig.7, in which a circle indicates a fixed node, whereas a square indicates an adaptive node [14].  
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Fig.7. Corresponding ANFIS architecture 

 

For simplicity, two inputs x , y  and one output z are considered. For a first order Sugeno fuzzy model 

with two fuzzy if–then rules, a common rule set can be expressed as in (13) and (14): 

 

Rule 1: if x  is 
1A  and y  is

1B , then 
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 1111 ry qxp z 
                                                                              (13) 

Rule 2: if x  is 
2A  and y  is

2B , then 

2222 ry qxp z 
                                                                               (14)  

 

 where Ai and Bi are the fuzzy sets in the antecedent, and pi, qi and ri are the design parameters that are 

determined during the training process. The ANFIS network structure, is made up of a set of units (and 

connections) organized into five connected network layers, 1 to 5 as shown in Fig.7.The detailed functions 

performed by each layer is explained in [12] and [13] and are summarized in the next section under ANFIS 

design. The ANFIS structure can be tuned automatically by the hybrid learning algorithm using a least-square 

estimation (for output membership functions) and a back propagation algorithm (for output and input 

membership functions) [14], [15] and [16]. 

 

5.2 Adaptive Neuro-Fuzzy System Controller Design 

The ANFIS controller generates change in reference drive voltage based on position error E and 

derivative in position error (speed error) DE defined by (15) and (16): 

 

 position) Actual -position (Desired = (E)Error                            (15) 

 Error) Previous -Error(Current  = (DE) ChangeError                 (16) 

 

In this study, a first order Sugeno-type fuzzy inference is used for ANFIS and the typical fuzzy rule 

takes the form of (17):                 

 If E is 
iA and DE is 

iB  then,  

                                                            DE)(E, f = z                                                                                          (17)                                   

where 
iA  and 

iB  are fuzzy sets in the antecedent and z =f (E, DE) is a crisp function in the consequent. The 

significances of each layer and operation of the 2 input -1 output ANFIS structure [12], [13] considered are: 

 

Layer 1: This layer (the fuzzification layer) enables the entry of raw data or crisp inputs from the target system 

into ANFIS. It is composed of a number of computing nodes whose activation functions are fuzzy logic 

membership functions, taken here as triangular. Each adaptive node generates the membership grades called 

fuzzy spaces for the input vectors
iA , 1i ,…, n  and

iB , 1i ,…, n  where n  is the number of membership 

functions of the inputs (E and DE) chosen as 7n , defined by (18). The degree to which the inputs lie within 

the fuzzy space is given a value normalized between -7 and 7.  

                                                         n1,....,i , (DE)=,O   (E),=,O Bii

1

Aii

1  BA                                      (18) 

 

Layer 2: Is the rule layer where each node is fixed. Once the locations of inputs in the fuzzy spaces are 

identified, the product of the degrees to which the inputs satisfy the membership functions is found. This 

product is called the firing strength of a rule whose output is given by (19). In other words, it selects the 

minimum value of the inputs.  In this layer, the total number of Takagi-Sugeno rules used is 49.  

                                                      
(DE))(E).min(W=O BiAiii

2 
                                                      (19) 

Layer 3: This is the normalization layer in which the ratio of each rule’s firing strength is calculated with 

respect to the sum of the firing strengths of all the rules. Each node in this layer is fixed. The thi node output is 

the thi  input activation level divided by the sum of all the activation levels of the other inputs, as given in (20):  
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i i
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W
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ii
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                                                                                (20) 

Layer 4: In layer 4, the defuzzification layer, the output of each node is the weighted consequent value. 

Adaptive node i  in this layer calculates the contribution of thi  rule towards the overall output, with the 

following node function in (21):   

                                                           
)(WW=O iii

4

iiii rDEqEPZ 
                                    (21) 

Layer 5: Layer 5 is the summation layer and its output, which is the sum of all the outputs of layer 4, gives the 

overall output for the respective inputs within the fuzzy space. The single fixed node in this layer computes the 

overall output as the sum of each rule’s contribution given in (22): 
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Before the ANFIS system can be used for prediction, the parameters of the rules are determined by first 

generating an initial FIS where first random values are assigned to the parameters. Next, an optimization scheme 

is applied to determine the best values of the parameters that would supply rules to idealistically model the 

target system. After training, the rules remain so that when new input data is presented to the model, the rules 

provide a corresponding reasonable output [13]. The optimization technique used is a hybrid learning algorithm 

that minimizes the error between the ANFIS model and the real system using training data from the target 

system to generate signals that propagate backwards and forwards and update the parameters [14]. The 

parameters to be trained are Ai, and Bi of the premise parameters and
ip , 

iq  and 
ir  of the consequent 

parameters. The ANFIS Editor GUI window includes four distinct areas to support a typical workflow. It 

enables realization of the following tasks: 

 Loading, Plotting, and Clearing the Data 

 Generating or Loading the Initial FIS Structure 

 Training the FIS  

 Validating the Trained FIS [15] 

 

For generating FIS structure, the triangular MF is used for the two input variables and output type is 

linear.  The number of MFs for the input variables E and DE is 7 each hence the number of rules is 7*7 = 49.  

Fig.8 shows the membership functions for E and DE before training. Fig.9 shows the generated ANFIS structure 

used for the DC servo motor antenna positioning controller design. It has been used 80% of the generated 

datasets for training the ANFIS system model and 10% each as testing and checking data. Hybrid learning 

algorithm was used for training the generated FIS with the number of epochs as 100 and tolerance of 0.01. It is 

clear from [16] that the triangular MF is specified by two parameters. Therefore, the ANFIS used here contains 

a total of 371 fitting parameters, of which 28 (2*7 +2*7 = 28) are the premise parameters and 343 (7*49 = 343) 

are the consequent parameters.   

 

        
Fig.8. Input and Output Membership functions before training 

 

 
Fig.9. 5-Layer ANFIS model structure with 2 inputs & 1 output 
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Fig.10. Membership functions for E and DE and Section of ANFIS Rule viewer after training 

 

Fig.10 shows optimized membership function for E and DE and the rule viewer after training. Thus an 

adaptive network that has exactly the same function as a Sugeno fuzzy model has been constructed. In Fig.11, 

the trained ANFIS controller with testing and checking data plots are shown. Surface plots showing 

relationships between input and output parameters before and after training are given in Fig.12 to help view the 

control surface. 

 

     
Fig. 11. Training, Testing and Checking ANFIS controller 

 

     
Fig.12 3D-Surface plot before training (left) and after training (right) 

 

The steps for MATLAB simulation are summarized as: 

1. The SIMULINK model layout created (Fig.13) is opened and fuzzy editor invoked by typing fuzzy. 

2. The Mamdani FLC and Takagi-Sugeno (TS) ANFIS based .fis files (named mamdani2, anfis3) are loaded 

to the fuzzy editor and then exported to workspace. 

3. Each of the 49-rule based Mamdani FLC and TS ANFIS models are run and the simulation stopped after 

10seconds. 

4. The created MATLAB m-file is executed to generate training, testing and checking data used in ratio 8:1:1. 

5. The variables x=position error, y=error rate, z=output and three other variables [a1, a2, a3] are selected to 

hold data from step (4) in excel fields each made up of the corresponding three columns. 

6. The anfis editor is opened by typing command anfisedit and the number and type of Membership functions 

are specified. 

7. Variable [a1,] is loaded from workspace, grid partitioning is selected as FIS generation method, number of 

epochs is set (between 40 and 100) and tolerance 0.01. Training is done using hybrid algorithm method. 

8. The .fis ANFIS file is exported to workspace and the SIMULINK control model (ANFIS model) run. This 

trained the Adaptive Neural-Network.  

9. The testing and checking data sets are loaded, in turns, to the ANFIS .fis file using [a2, a3,] from workspace 

and performance is tested and validated respectively. 
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10. The performance characteristics are observed and analyzed and the design process is stopped once design 

constraints/objectives have been fulfilled. 

 

VI. Simulink Model 
The SIMULINK model for the designed NFSC including PID and FLC controllers created in 

MATLAB software for conducting the simulations is shown in Fig. 13. The FLC controller and MATLAB code 

were used to generate the required training, testing and checking data. The inputs of the controller are taken as 

reference position represented by a step input signal and the actual position obtained from the actual output 

signal feedback.  The output is the driving voltage to the motor driver. The prototype circuit diagram 

constructed within Proteus 8 Professional Simulator environment for software implementation is as shown in 

Fig.14. 

 

 
Fig.13. PID, FLC and NFSC (ANFIS) Simulink Model Layout 

 

 
Fig.14.Circuit Diagram for antenna position control with NFSC (ANFIS) 

 

VII. Results and Discussion 
The proposed NFSC system has been studied by simulation. Further, it has been compared with the 

conventional PID controller and FLC in order to evaluate its performance in presence of saturation nonlinearity 

and to validate the accuracy of the design. In Fig. 15, Fig. 16 and Fig. 17, the outputs of each controller i.e. PID, 

FLC and ANFIS (before training) are respectively shown while Fig.18 shows the NFSC output after training has 

been conducted. From this, it was observed that the ANFIS controller output was the best in terms of faster rise 

time, settling time and amplitude stabilization. Fig.19 shows system response with PID controller in which it is 

seen that the response is not that good owing to high overshoot and increased settling time. 
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Fig.15. PID Controller Output 
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Fig. 16. FLC Controller Output 
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Fig. 17. NFSC (ANFIS) Controller Output before training 
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Fig. 18. NFSC (ANFIS) Controller Output after training 
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Fig.19 System step response with PID controller 

 

Fig. 20 shows the Mamdani type FLC response to step input which shows no overshoot but the rise 

time is comparatively longer. Fig.21 gives system response by using the NFSC prior to training while Fig.22 

shows NFSC response after training.  Fig. 23 shows a combined plot to compare system responses using PID, 

FLC and NFSC (before training) and in Fig. 24, after training the NFSC. 
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Fig.20. Mamdani Type FLC step input response. 
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Fig.21 System response using NFSC before training. 
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Fig.22 System response using NFSC after training. 
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Fig. 23. Response of PID, FLC and NFSC (before training) 
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Fig. 24. PID, FLC and NFSC response after training NFSC 

 

Table 3: Simulation Results with Various Step Inputs 
  

PID 

 

FLC 

 

NFSC-Before Training 

Step 

Input 

tr ts Mp tr ts Mp tr ts Mp 

(V) (s) (s) (%) (s) (s) (%) (s) (s) (%) 

1 0.7 4.5 22.0 2.9 3.1 0.0 0.2 2.6 20.0 

2 0.8 4.2 21.0 3.1 3.1 0.0 0.2 2.7 20.0 

3 0.8 4.4 23.0 3.2 3.2 0.0 0.3 2.5 19.0 

4 0.7 4.8 22.0 3.0 3.3 0.0 0.2 2.7 19.0 

5 0.8 4.9 22.0 3.2 3.4 0.0 0.3 2.6 20.0 

6 0.8 4.6 23.0 3.2 3.2 0.0 0.2 2.7 20.0 

Av 0.8 4.6 22.2 3.1 3.2 0.0 0.2 2.6 20.0 

                                                            NFSC Response After Training 

Step Input tr ts Mp 

(V) (s) (s) (%) 

1 0.2 0.8 4.0 

2 0.2 0.7 4.0 

3 0.3 0.7 3.5 

4 0.2 0.8 4.0 

5 0.3 0.7 4.0 

6 0.2 0.7 4.5 

Av 0.2 0.7 4.0 

Key: tr-rise time, ts-settling time and Mp-percentage overshoot, Av=Average 
 

 

In addition, the system response was analyzed using the NFSC, FLC and PID controllers when 

different values of reference step input signal corresponding to the desired positions were applied. The 

corresponding results were studied and the estimated time response characteristics before training the NFSC and 

after training have been summarized in Table 3.                          

By examining the results, it is seen that NFSC provides response with faster settling times and 

minimized rise time albeit the presence of saturation nonlinearity. From the average values in Table 3, NFSC 

recorded the best average performance. The rise time is 3.1sec for Mamdani FLC model, 0.2sec for the Takagi-

Sugeno NFSC model both prior to and after training and 0.8sec for the PID control. The maximum overshoot is 

22.2% with PID, none with the FLC and 20.0% with NFSC (before training) and only 4.0% after training due its 

learning ability. The settling time is 3.2 sec. for FLC, 2.6 sec and 0.7sec for the NFSC before and after training 

respectively and 4.6 sec for the PID control. It can be understood from this study that while using NFSC the 

system tends to approach and settle at the desired position in the fastest times (0.2sec and 0.7sec respectively) as 

compared to both PID and FLC controller. This means that the rate at which the error between desired antenna 

position and its actual position can be performed by the NFSC algorithm within the least amount of time and 

thus allowing for continued establishment of a direct line of sight for quality communication between the 

parabolic dish and the selected satellite. The PID controller apart from its high overshoot takes longer to reach 



Design of Neuro-Fuzzy System Controller for DC Servomotor-Based Satellite Tracking System 

DOI: 10.9790/1676-11040389102                                         www.iosrjournals.org                                 102 | Page 

steady state. Although no overshoot was registered with FLC, it lacks the learning ability offered by the NFSC 

which has been acquired at the expense of a 4% overshoot introduced in steady state value but which is still 

within the desired limit of less than 10%. 

 

VIII. Conclusion 

The objective of this paper to design NFSC Controller for DC servomotor has been achieved. This was 

verified through simulated output responses of the system to step input signal which satisfied the design criteria. 

The FLC alone increased both the rise and settling times by a few seconds but decreased the overshoot 

significantly to zero degrees. Using PID, FLC and ANFIS approach it is seen that ANFIS provides the best 

performance in terms of stabilizing the system response in a much shorter time with minimum rise time and 

overshoot. Therefore, the objectives were met in both design and software simulations. 

 

Future Work 
 Further work may focus on the hardware application of the developed NFSC algorithm to achieve 

automatic and real time satellite tracking with parabolic antenna.  
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